What's In An Inch? The Case for Requiring Improved Turtle Excluder Devices in All U.S. Shrimp Trawls

Authors: Mariah Pfleger, Kara Shervanick and Lora Snyder

The authors would like to thank the following individuals for their contributions during the development and review of this report: Eric Bilsky, Gilbert Brogan, Alicia Cate, Dustin Cranor, Alison Johnson, Shelly Krueger, Kathryn Matthews, Ph.D., Patrick Mustain, Jacqueline Savitz and Amelia Vorpahl

Executive Summary

The National Marine Fisheries Service can save the lives of thousands of threatened and endangered sea turtles by requiring a simple modification to shrimp fishing gear. Shrimp fishing vessels in the South Atlantic and the Gulf of Mexico (from North Carolina to Texas) encounter endangered and threatened sea turtles over 500,000 times a year, resulting in tens of thousands of deaths annually.

However, shrimp fishing vessels can insert metal grates called Turtle Excluder Devices (TEDs) into their trawl nets that let sea turtles escape, while still allowing the net to catch shrimp.

Unfortunately, the benefits of TEDs are not being fully realized. In fact, less than half of the shrimp vessels in the U.S. are required to use TEDs.

Furthermore, some types of TEDs work better than others. The National Marine Fisheries Service has found that by modifying the current TED—reducing the space between the bars from the current 4-inch requirement to no more than 3 inches—more small sea turtles can escape drowning.

Currently, the Fisheries Service is developing new measures to protect sea turtles, including through requirements for TEDs on all trawls. But the regulations will not do enough unless the government also requires that all TEDs have no more than 3-inch spacing between their bars.

The Fisheries Service may also consider requiring 3-inch TEDs only on nearshore vessels – vessels that fish near the coastline. Restricting 3-inch TEDs to just the nearshore region will needlessly result in thousands of sea turtle deaths, because shrimp vessels catch smaller sea turtles offshore as well as nearshore. To demonstrate that 3-inch TEDs should be required on all trawls in order to most effectively reduce sea turtle mortality, Oceana analyzed data from academic and government sources documenting 352 sea turtle captures and found:

- Sea turtles, including those that are too small to be saved by 4-inch TEDs, are found both nearshore and offshore.
- 3-inch TEDs could save 66 percent more sea turtles than 4-inch TEDs.
- 3-inch TEDs could save 222 percent more critically endangered Kemp's ridley sea turtles, the species most at risk.

In short, the Fisheries Service can save thousands of sea turtles by requiring 3-inch TEDs on all shrimp fishing trawl vessels in the South Atlantic and the Gulf of Mexico. Anything less results in the unnecessary death of thousands of endangered and threatened sea turtles.

Introduction

Trawling is one of the greatest threats facing sea turtle populations in the Southeast Atlantic and Gulf of Mexico.¹ This method of fishing uses large nets with weights at the bottom of the mouth of the net and floating devices at the top to keep the mouth of the net as wide as possible. As the vessel pulls the net through the water, the net catches fish, invertebrates, and, in some cases, sea turtles that are funneled to the back of the net, known as the "cod end".²

Many sea turtles ultimately drown in the nets, as they have no means of escaping to the surface to breathe. In fact, according to government estimates, the Southeast shrimp trawl fishery interacts with these sea turtles over 500,000 times a year, resulting in tens of thousands of deaths.³

In the 1980s, to address the issue of sea turtle bycatch in trawl fisheries, some shrimpers and environmental groups aided the Fisheries Service in developing the Turtle Excluder Device.⁴ TEDs are metal grates positioned inside shrimp nets near the cod end that have a flap in front to allow sea turtles to escape (Figure 1).

Shrimp are able to slide past the bars of the TED into the cod end, while sea turtles, sharks, rays and larger, non-target fish go free.⁵ When installed properly, standard TEDs with bars 4 inches (10.16 cm) apart (4-inch TEDs) may be up to 97 percent effective at reducing the capture of sea turtles large enough to be blocked by the bars.⁶

The Fisheries Service has not yet required the use of TEDs in all U.S. shrimp trawls, so the accidental encounter and capture of small sea turtles remains high.⁷

Figure 1. An example of trawl gear and how a Turtle Excluder Device is incorporated into the net to allow turtles to escape.

Multiple types of vessels comprise the Southeast shrimp trawl fishery and each is regulated differently. This includes those that operate in shallow waters closer to shore ("nearshore") and those that operate miles off the coast in deeper waters ("offshore").

Skimmer, pusher heads and wing net trawls, collectively referred to as "skimmer trawls,"⁸ operate nearshore, while otter trawl vessels tend to be larger vessels that operate offshore.⁹

Since 1987, the Fisheries Service has required all otter trawl vessels to use 4-inch TEDs,¹⁰ while the nearshore skimmer trawls in the Southeast, totaling at least 2,400 vessels, are exempt from TED requirements.¹¹ The Fisheries Service requires these vessels to comply with alternative measures such as tow-time restrictions;¹² however, vessels in the skimmer trawl fleet have been caught exceeding the time requirements,¹³ which can cause sea turtles to drown.

In 2012, the Fisheries Service proposed to eliminate the TED exemption and require TEDs on all trawls,¹⁴ however, the Fisheries Service claimed the rule was not promulgated because the 4-inch TEDs were not narrow enough to prevent small sea turtles from passing through.

"Fishery observers found that turtles captured in skimmer trawls are so small that they are not necessarily able to escape through the TED door. Instead, the smaller turtles can pass through the bars of the TED and get caught inside the end of the net, potentially causing them to drown rather than allowing them to escape as intended."¹⁵

Table 1. The mini length at which a	mum straigh turtle will be	t carapace e excluded
	4" TED (10.16 cm)	3" TED (7.62 cm)
Green	27.72	20.81
Kemp's ridley	25.72	18.73
Loggerhead	23.86	17.39
Hawksbill	21.08	15.81

Table 1. The straight carapace length (SCL) atwhich each species of sea turtle in our data setwill not pass through a given bar spacing. All SCLmeasurements are given in centimeters.

The Fisheries Service found that any Kemp's ridley sea turtle less than 25.72 centimeters in straight carapace length (SCL)¹⁶ could pass though the 4-inch TED bars (Table 1).¹⁷ Based on the same methods used by the Fisheries Service, Oceana calculated the sizes at which each species of sea turtle would pass through a 4-inch TED bar spacing, increasing the likelihood of drowning (Table 1) (Appendix 1).

Additionally, the Fisheries Service found after conducting multi-year testing in order to find a more efficient TED, that by reducing bar spacing by 1 inch (from 4 inches to 3 inches) (3-inch TEDs), more small sea turtles could successfully escape the nets.¹⁸ Unfortunately, small sea turtles that are capable of passing through a 4-inch TED live both nearshore and offshore,¹⁹ where they can come into contact with skimmer, pusher head, wing net and otter trawl vessels.

Testing by the Fisheries Service itself demonstrates that to save more sea turtles, TEDs with a maximum bar spacing of 3 inches should be required on all trawls. This study corroborates those findings. By requiring this type of TED on both otter trawl and skimmer trawl vessels, the government would protect small juvenile sea turtles found nearshore and offshore.

Why 3-inch TEDs Should be Required in All Trawls

Juvenile sea turtles start their lives in the sand, hatching out of an egg and digging their way to the surface to make their journey to the open ocean, where they feed and grow until they return to shallow nearshore waters.²⁰ Scientists have caught and tagged 1-to 2-yearold²¹ green and Kemp's ridley sea turtles along the coastline and as far as 62 miles from shore in the Gulf of Mexico.²²

Unfortunately, the current regulations do not adequately protect juvenile sea turtles, as the required 4-inch TED leaves them at risk of slipping through the bars and drowning while offshore. Nearshore, there is no TED requirement at all.²³

The endangered Kemp's ridley²⁴ is one such example. This species is between 2 and 4 years old when it transitions from open ocean to coastal habitats, where they remain until they reach sexual maturity (Table 2).^{25,26}

During this transition, Kemp's ridley sea turtles are about 25 centimeters straight carapace length, a size that is only excluded from trawls using a 4-inch TED. At this age, Kemp's ridleys can be found both offshore²⁷ and nearshore, making them vulnerable to both skimmer and otter trawl vessels.

In addition, Kemp's ridley sea turtles nest almost exclusively on the beaches of the western Gulf of Mexico,²⁸ arguably making them the species most impacted by shrimp trawls in the South Atlantic and Gulf of Mexico. The decision to not require offshore shrimp trawls to use 3-inch TEDs could be especially devastating to this species.

Oceana analyzed data from academic and government sources documenting 352 sea turtle captures.²⁹ The data included information concerning catch location, species of sea turtle, and carapace length – which correlate with life stage. Oceana mapped the captures³² to show the nearshore and offshore habitats used by sea turtles during different life stages (Figure 2).³³ Each point in Figure 2 represents one individual, including green, hawksbill and Kemp's ridley sea turtles, ranging in size from 4.9 to 87.3 centimeters SCL.

The coordinates of the sea turtles are mapped over known shrimp trawling locations from the 2011-2015 Electronic Log Book (ELB) shrimp tow time data (Figure 2).³⁴

Table 2. L	ife Stage, Ecos	system, Age and Size of the Kemp's Ridley Sea Tu	tle
Life stage	Ecosystem	Approximate age	Size at approximate age (SCL) ³⁰
Hatching stage	Land	Unborn	N/A
Hatching swim frenzy/ transitional stage	Nearshore	-4.5 days old	-4 cm
Juvenile stage (primary)	Offshore	0-2 years (but can be up to 4 years old)	~4 cm - ~29 cm
Juvenile stage (secondary)	Nearshore	This transition happens around ~2 years old (but can happen anywhere from 1-4 years old)	<u>></u> ~25 cm

Table 2. Life stage, ecosystem, age and size of the Kemp's ridley sea turtle.³¹

When turtle capture locations are mapped on top of shrimp trawling tow time data, it becomes evident that sea turtles at various life stages can encounter shrimp trawls. These interactions can occur nearshore, where skimmer trawls operate, or offshore, where otter trawl vessels fish.

More Sea Turtles Could be Saved with Reduced Bar Spacing

The requirement of 4-inch TEDs on otter trawl vessels was a step forward for sea turtle conservation in 1987; however, new research on sea turtle life history makes it clear that small sea turtles found both offshore and nearshore can slip through the bars of a 4-inch TED and drown.³⁶

Since the time of the original requirements, TEDs have undergone a number of improvements that can help to minimize the capture of small sea turtles,³⁷ including a new design with smaller bar spacing. In order to successfully escape a net equipped with a 4-inch TED, a sea turtle must have a body depth³⁸ of greater than 4 inches (10.16 cm). Likewise, a sea turtle with body depth greater than 3 inches (7.62 cm) will have the ability to escape 3-inch TED.

Oceana analyzed the same data that was used in Figure 2 from 352 sea turtles captured and measured by researchers in the Southeast (Figure 3 and 4) in order to determine which individuals could be saved with a 3-inch TED. These turtles were located nearshore in shallow coastal waters as well as offshore, as far as 100 kilometers (62 miles) from shore, representative of hundreds of thousands of sea turtles that interact with trawls in this region. The methods used for body depth calculations can be found in Appendix 1. Our results (Figures 3 and 4) indicate that:

Figure 2. Southeast Region Sea Turtle Captures. Map of all sea turtle captures in the Southeast region included as data points in this report. Yellow circles indicate green sea turtles, green circles represent hawksbill sea turtles, and blue circles represent Kemp's ridley sea turtles. All sea turtles have been mapped, but due to close proximity in capture locations, not all individuals can be seen. Pink shaded areas indicate the presence of shrimp trawl activity from 2011 to 2015.³⁵

- Only 28 percent (100) of the 352 sea turtles in the data set would have likely survived an encounter with a shrimp trawl if a 4-inch TED were used;
- Forty-seven percent (166) of the 352 sea turtles in the data set would have likely survived an encounter with a shrimp trawl if a 3-inch TED were used, an increase of 66 percent; and
- Of those 66 percent, two-thirds were found within 10 miles of known shrimping activity. This is likely a conservative number, as the shrimp trawl data does not include all vessels operating in the Southeast.⁴⁰

Examining the 41 Kemp's ridley sea turtles in the dataset – found both nearshore and offshore – our results (Figure 4) indicate that:

- Only 22 percent of the Kemp's ridleys in the data set (9 of the 41) would have likely survived an encounter with a shrimp trawl if a 4-inch TED were used; and
- Seventy-one percent of Kemps ridleys in the data set (29 of the 41) would have likely survived an encounter with a shrimp trawl if a 3-inch TED were used, an increase of 222 percent.

Thus, a 1-inch reduction in TED bar spacing could significantly increase the number of Kemp's ridley sea turtles able to survive capture in shrimp nets, which is particularly important for a species that is only at 14.5 percent of historic nesting levels and previously underwent more than 99 percent decline in population.⁴²

Figure 3. Sea Turtle Mortality Preventable by a 1-inch Reduction in TED Bar Spacing. Of the sea turtle capture locations from Figure 2, this map shows those turtles that are within the size range to have drowned in a TED with 4-inch bar spacing, but would have survived a TED with 3-inch bar spacing. Yellow circles indicate green sea turtles, green circles represent hawksbill sea turtles, and blue circles represent Kemp's ridley sea turtles. All saved sea turtles have been mapped, but due to close proximity in capture locations not all individuals can be seen. Pink shaded areas indicate the presence of shrimp trawl activity from 2011 to 2015.⁴¹

Figure 4. Survivability of sea turtles in 3-inch vs. 4-inch TEDs. Solid bars represent percentage of sea turtles that would survive an encounter with a trawl using a 4-inch TED. Striped bars represent percentage of sea turtles that would survive an encounter with a trawl using a 3-inch TED. Green represents all sea turtle species, while blue represents only Kemp's ridley sea turtles.

Why 3-inch TEDs Need to be Required in All Trawls

The Fisheries Service has suggested a number of regulatory alternatives to address the problem of small sea turtle mortality in the Southeast shrimp trawl fishery. These include:

- Requiring all skimmer trawls, pusherhead trawls and wing nets (butterfly trawls) in both the Atlantic and Gulf areas to use either modified TEDs with narrow bar spacing (i.e., less than the current 4-inch bar spacing maximum) or standard TEDs; or
- Requiring all skimmer trawls, pusherhead trawls and wing nets in both the Atlantic and Gulf areas to use modified TEDs with narrow bar spacing; or
- Requiring all trawlers (i.e., otter trawls, skimmer trawls, pusherhead trawls and wing nets) fishing in specific areas where small sea turtles occur to use modified TEDs with narrow bar spacing.⁴³

This report demonstrates that small sea turtles are found both nearshore and offshore, and that 3-inch TEDs could save 66 percent more turtles than 4-inch TEDs. Additionally. implementation of 3-inch TEDs could save 222 percent more critically endangered Kemp's ridley sea turtles, a species that nests exclusively in the Gulf of Mexico. In order to increase protections for sea turtles. the only appropriate alternative for the Fisheries Service would be to require TEDs with a maximum of 3 inch bar spacing on all trawls in the Southeast region.

APPENDIX - Methods

Calculations

Table 1 shows the calculations that were required in order to analyze the data. Most of the data was taken using the standard of straight carapace length (SCL); however, if it was measured in curved carapace length (CCL), the data was converted using the equations in Column A.

When sea turtles are captured, they are measured in either SCL, or curved carapace length (CCL) – the length from the front edge to the rear edge of the shell, along the arch of the shell. In order to transform CCL data to body depth, CCL has to be transformed into SCL via species-specific formulas.⁴⁴ Once all data was converted to SCL, the values were then converted to a body depth measurement (BD) for each species using the equations in Column B.

Note that the equations were prepared by different researchers. See Table 2 for source information. Once the body depth has been calculated, it is easy to determine whether or not any given sea turtle would be saved by a 4-inch or 3-inch TED (Appendix 1). In order to figure out whether or not an individual sea turtle would survive a given TED bar spacing, values for each species had to be calculated using the equations in Column C. Column D is the SCL at which each sea turtle species would survive a given TED bar spacing (4 inches or 3 inches). These values were then applied to the BD information for each species to determine the "survivability" of an individual sea turtle.

Table 1					
	A	В	С	D	
Explanations:	Conversion from CCL to SCL	Given an SCL, what's the corresponding BD	Given a BD, what size would the SCL be?	SCL at which e survive a giver	ach species will bar spacing
	$CCL \rightarrow SCL$	SCL → BD	$BD \rightarrow SCL$	4" (10.16 cm)	3" (7.62 cm)
Green	SC = 0.294+(0.937* CCL)	In BD=-1.0115+(1.0023*In SCL) [n=176, r ² =0.977]	In SCL=(In BD+1.0115)/1.0023	27.72	20.81
Kemp's Ridley	SCL= 0.013+(0.945* CCL)	In BD=-0.6283+(0.9075*In SCL) [n=631, r ² =0.989]	In SCL=(In BD+0.6283)/0.9075	25.72	18.73
Loggerhead	SCL= -1.442+(0.948* CCL)	In BD=-0.5682+(0.9100*In SCL) [n=250, r ² =0.966]	In SCL=(In BD+0.5682)/0.9100	23.86	17.39
Hawksbill	SCL = -0.212+(0.955* CCL)	In BD=-0.6345+(0.9090*In SCL) [n=274, r ² =0.9827]	In SCL=(In BD+0.6345)/0.9090	21.08	15.81

Table 1. The equations that were used to A) convert a curved carapace length (CCL) to a straight carapace length (SCL), B) calculate a given sea turtles body depth (BD) using their SCL, C) determine what the SCL would be for a selected BD (i.e. the bar spacing of a TED), and D) the SCL values for each species for a given bar spacing. See Table 2 for source information.

Table 2. The corre	esponding sources for the inform	ation in Table 1.	
Sources:	Teas, W. G. (1993). Species composition and size class distribution of marine turtle strandings on the Gulf of Mexico and southeast United States coasts, 1985-1991. US	Epperly, S. P., & Teas, W. G. (2002). Turtle excluder devices-are the escape openings large enough? Fishery Bulletin, 100(3), 466–474. [green/kemps/loggerhead]	Calculated by rearranging the equations in column B
	Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center.	van Dam, R. P., & Diez, C. E. (1998). Caribbean hawksbill turtle morphometrics. <i>Bulletin of Marine</i> <i>Science</i> , 62(1), 145–155. [hawksbill]	

For Example

The data that was used in the NOAA report, which tested the effectiveness of TEDS with 4-inch bar spacing for Kemp's ridley sea turtles in the Gulf of Mexico (Memorandum from Bonnie Ponwith on SEFSC Skimmer Trawl Observer Data and Analysis (Sea Turtle Captures and Percentage Released in TEDs) to Roy E. Crabtree (Aug. 16, 2012) (on file with Oceana)), can be found in columns A and B of Table 3. There were 18 straight carapace length (SCL) measurements and three curved carapace length (CCL) measurements given. Because body depth (BD) is calculated using SCL, the CCL's needed to be converted to SCL. Using the CCL value in cell B4, the following example demonstrates how BD was calculated for an individual.

The equation for converting CCL to SCL for a Kemp's ridley sea turtle is defined by the expression below. SCL=0.013+(0.945*CCL)

For a CCL value of 22.9 cm, SCL=0.013+(0.945*22.9)

Thus, the SCL= 21.65

The relationship between BD and SCL is below.

In BD= -0.6283+(0.9075*In SCL)

By rearranging the equation, BD=e^{-0.6283+(0.9075*In SCL)}

For a SCL value of 21.65 cm, BD=e^{-0.6283+(0.9075*ln 21.65)}

Thus, the BD=8.69

Once the body depths were calculated for all individuals, if the BD was less than 10.16 cm, which is the bar spacing distance in a 4-inch TED, then they were classified as not surviving an interaction with a 4-inch TED (Table 3, column D). If the BD was less than 7.62 cm, the bar spacing distance of a 3-inch TED, then the Kemp's ridley sea turtle was classified as not surviving an interaction with a 3-inch TED (Table 3, column E). The difference in the number of individuals that survived was considered the survivability of sea turtles if a 3-inch TED bar spacing had been used. Table 1 shows that with a 4-inch TED, 7 out of 21, or 33 percent of the Kemp's ridley sea turtles would have survived, whereas with a 3-inch TED, 21 out of 21, or 100 percent of the Kemp's ridley sea turtles would have survived.

Table 3. NO	DAA's data fo	r testing of 2	21 Kemp's ridley sea	turtles ⁴⁵	
	А	В	с	D	E
	SCL (cm)	CCL (cm)	Body Depth (CM)	Survive a 4" ted? (BD above 10.16 cm?)	Survive a 3" ted? (BD above 7.62 cm?)
1	19.3		7.83	No	Yes
2	21.4		8.60	No	Yes
3	21.6		8.67	No	Yes
4	21.65*	22.9	8.69	No	Yes
5	22.0		8.82	No	Yes
6	22.4		8.96	No	Yes
7	22.4		8.96	No	Yes
8	22.5		9.00	No	Yes
9	23.1		9.22	No	Yes
10	23.2		9.25	No	Yes
11	23.64*	25	9.41	No	Yes
12	24.0		9.54	No	Yes
13	24.30*	25.7	9.65	No	Yes
14	24.8		9.83	No	Yes
15	29.3		11.44	Yes	Yes
16	29.4		11.47	Yes	Yes
17	29.4		11.47	Yes	Yes
18	30.0		11.68	Yes	Yes
19	35.4		13.58	Yes	Yes
20	36.0		13.79	Yes	Yes
21	45.6		17.09	Yes	Yes

* indicates that the data was obtained by converting CCL to SCL.

Table 4. All sea turtle, sources, species, length, and location data included in these analyses.

The following colors represent the sources from which the data was obtained.

Memorandum from Bonnie Ponwith on SEFSC Skimmer Trawl Observer Data and Analysis (Sea Turtle Captures and Percentage Released in TEDs) to Roy E. Crabtree (Aug. 16, 2012) (on file with Oceana).

E-mail from Wendy Teas, NOAA Federal, to Jennifer Lee, NOAA Federal (May 31, 2013, 12:05 EDT) (on file with Oceana).

Putman, N. F., & Mansfield, K. L. (2015). Direct Evidence of Swimming Demonstrates Active Dispersal in the Sea Turtle "Lost Years." *Current Biology*, 25(9), 1221–1227. https://doi.org/10.1016/j.cub.2015.03.014

Data tha with an *	at are bracketed * are CCL data					Data tha with an '
Unique ID	Source/data file location	Species	SCL (cm)	Release Latitude	Release Longitude	Unique ID
1	Putman, N. F.,	Green	14.1	28.56259	-89.68685	36
2	& Mansfield, K I (2015)	Green	15.3	28.59799	-89.74522	37
3	Direct	Green	15.5	28.64606	-89.63086	38
4	Evidence of	Green	15.6	28.59799	-89.74522	39
5	Demonstrates	Green	15.7	28.64606	-89.63086	40
6	Active	Green	15.8	28.62009	-89.94616	41
7	Dispersal	Green	15.8	28.62009	-89.94616	42
8	Turtle "Lost	Green	15.9	28.77267	-89.80135	43
9	Years." Current Biology 25(9)	Green	16.0	28.62009	-89.94616	44
10	1221-1227.	Green	16.3	28.66982	-89.77107	45
11	https://doi.	Green	16.5	28.59799	-89.74522	46
12	j.cub.2015.	Green	16.6	28.56259	-89.68685	47
13	03.014	Green	16.9	28.63226	-89.67791	48
14		Green	17.6	28.62009	-89.94616	49
15		Green	17.8	28.59799	-89.74522	50
16	-	Green	18.4	28.56259	-89.68685	51
17		Green	18.9	28.56259	-89.68685	52
18		Green	19.1	28.62009	-89.94616	53
19		Green	19.5	28.66982	-89.77107	54
20	-	Green	20.5	28.89037	-88.76559	55
21		Green	21.1	28.89037	-89.76559	56
22		Green	25.4	28.63226	-89.67791	57
23		Green	27.2	29.72882	-88.47305	58
24		Green	28.8	28.8494	-89.6438	59
25		Kemps	14.6	28.64606	-89.63086	60
26		Kemps	16.1	28.56259	-89.68685	61
27		Kemps	16.9	28.56259	-89.68685	62
28		Kemps	17.1	28.77267	-89.80135	63
29		Kemps	17.4	28.62009	-89.94616	64
30		Kemps	17.4	28.62009	-89.94616	65
31		Kemps	17.4	28.77267	-89.80135	66
32		Kemps	17.9	28.62009	-89.94616	67
33		Kemps	18.1	28.62009	-89.94616	68
34		Kemps	18.2	28.64606	-89.63086	69
35		Kemps	18.3	28.56259	-89.68685	70

hat 1 *	are bracketed are CCL data				
5	Source/data file location	Species	SCL (cm)	Release Latitude	Release Longitude
		Kemps	18.7	28.62009	-89.94616
		Kemps	19.3	28.63226	-89.67791
		Kemps	20.2	28.64606	-89.63086
		Kemps	22.2	28.91369	-88.71671
		Kemps	22.3	28.91369	-88.71671
		Kemps	23.3	26.8099	-83.2503
		Kemps	23.5	27.22677	-83.39353
		Kemps	26.2	27.28753	-83.68142
		Kemps	29.9	25.58167	-82.76667
	E-mail from	hawksbill	20.8	24.7195	-81.0187
	Wendy	hawksbill	20.8	28.2999	-96.4807
	Federal, to	hawksbill	20.8	26.4653	-80.0569
	Jennifer	hawksbill	21.0	26.4586	-80.0583
	Federal (May	hawksbill	21.5	28.1900	-82.8504
	31, 2013,	hawksbill	21.6	27.8597	-80.4471
	12:05 EDT) (on file with	hawksbill	23.0	26.8637	-82.3173
	Oceana).	hawksbill	23.1	26.1175	-97.1653
		hawksbill	23.2	27.6091	-97.2054
		hawksbill	23.4	25.9078	-80.1218
		hawksbill	23.6	25.7802	-80.1284
		hawksbill	23.8	28.9405	-95.2940
		hawksbill	24.0	27.8332	-97.0463
		hawksbill	24.3	27.4595	-82.6969
		hawksbill	24.4	29.6644	-84.8555
		hawksbill	24.5	24.6051	-81.8711
		hawksbill	24.6	26.7787	-80.0314
		hawksbill	25.0	27.8370	-82.8379
		hawksbill	25.0	34.6956	-76.7110
		hawksbill	25.2	25.9069	-80.1212
		hawksbill	25.5	26.5803	-97.2833
		hawksbill	25.7	27.6266	-97.1952
		hawksbill	25.8	27.1881	-82.5021
		hawksbill	26.1	29.4599	-94.6147
		hawksbill	26.4	26.3162	-81.8400
		hawksbill	26.5	27.0592	-97.379

Data tha with an *	at are bracketed * are CCL data						Data tha with an *	t are bracketed are CCL data		
Unique ID	Source/data file location	Species	SCL (cm)	Release Latitude	Release Longitude		Unique ID	Source/data file location	Species	SCL (cm)
71		hawksbill	26.7	27.8304	-97.0501		111		hawksbill	65.5
72		hawksbill	28.8	24.7257	-81.0084		112		hawksbill	65.5
73		hawksbill	30.0	24.8532	-80.7316		113		hawksbill	66.1
74		hawksbill	30.1	25.9491	-80.1189		114		hawksbill	66.3
75		hawksbill	30.9	26.1295	-97.1670		115		hawksbill	66.8
67		hawksbill	31.8	24.6276	-82.8723		116		hawksbill	68.1
77		hawksbill	32.3	27.6424	-97.1869		117		hawksbill	68.4
78		hawksbill	32.4	30.7561	-81.459		118		hawksbill	70.0
79	-	hawksbill	32.7	25.9604	-80.1185		119		hawksbill	70.0
80	-	hawksbill	33.0	27.8415	-97.0451		120		hawksbill	70.2
81	-	hawksbill	34.5	27.6483	-97.1843		121		hawksbill	75.5
82	-	hawksbill	35.2	27.5900	-97.2133		122		hawksbill	76.6
83	-	hawksbill	36.2	27.4059	-82.6547		123		hawksbill	87.3
84	-	hawksbill	37.8	27.7186	-82.7413		124		hawksbill	4.9
85	-	hawksbill	38.0	26.8768	-80.0399		125		hawksbill	5.0
86	-	hawksbill	38.6	26.1429	-81.8078		126		hawksbill	5.1
87	-	hawksbill	41.0	24.8008	-80.8003		127		hawksbill	5.6
88	-	hawksbill	41.8	27.3778	-82.6354	1	128		hawksbill	5.7
89	-	hawksbill	43.5	27.6242	-82.7383		129		hawksbill	5.8
90	-	hawksbill	44.0	24.6117	-81.5250	1	130		hawksbill	5.8
91	-	hawksbill	44.6	26.5791	-97.2829		131		hawksbill	5.8
92	-	hawksbill	45.7	27.685	-82.7384	1	132		hawksbill	5.9
93	-	hawksbill	46.3	24.7168	-81.0235		133		hawksbill	5.9
94	-	hawksbill	46.6	25.9138	-80.1213	1	134		hawksbill	6.0
95	-	hawksbill	48.5	24.7280	-81.0312		135		hawksbill	6.1
96	-	hawksbill	52.1	28.2141	-82.8508	1	136		hawksbill	6.1
97	-	hawksbill	54.4	29.8443	-81.2648		137		hawksbill	6.2
98		hawksbill	55.3	27.8237	-82.8302		138		hawksbill	6.4
99		hawksbill	55.9	28.0224	-82.8261		139		hawksbill	6.4
100		hawksbill	58.8	28.0165	-82.8276		140		hawksbill	6.4
101		hawksbill	59.9	25.8627	-80.1192		141		hawksbill	6.5
102	-	hawksbill	60.1	26.3318	-80.0729	1	142		hawksbill	6.5
103	-	hawksbill	60.8	27.7863	-82.7867		143		hawksbill	6.5
104		hawksbill	61.0	24.5519	-81.7685		144		hawksbill	6.5
105		hawksbill	61.5	28.1846	-82.8671		145		hawksbill	6.5
106		hawksbill	62.8	24.8081	-80.8332		146		hawksbill	6.6
107		hawksbill	63.5	25.0193	-80.4992		147		hawksbill	6.6
108		hawksbill	64.4	26.4363	-82.0422		148		hawksbill	6.6
109		hawksbill	64.8	26.7031	-80.0327		149		hawksbill	6.7
110		hawksbill	64.9	26.3084	-80.0757		150		hawksbill	6.7

Release

Latitude

27.8636

26.3218

27.6183

26.2107

27.961

25.7033

25.6820

27.9081

27.7424

24.5780

25.6896

27.1043

27.8981

27.7413

29.2909

25.9212

27.2608

26.1531

26.1300

28.9389

27.6133

26.5048

27.7131

29.2758

26.1388

27.3320

26.4617

27.5008

26.1350 27.5797

26.7317

27.5917

27.3600

24.5515

26.1023

26.3670

26.0280

27.6192

27.1400 27.8223 Release

-80.448

-81.8424

-97.2005

-81.8169

-82.8312

-80.1545

-80.1558

-82.8482

-82.7587

-81.5769

-80.1566

-97.3765

-97.0111

-97.1237

-81.0383

-80.1213

-82.5459

-97.1703

-97.1667

-80.8303

-97.2038

-80.0512

-97.1422

-81.0309

-97.1680

-97.3320

-80.0581

-97.2623 -97.1667

-97.2211

-80.0348

-97.2133

-97.3217

-81.7703

-97.163

-80.0682

-80.1143

-97.2005 -97.3735

-97.0586

Longitude

Data tha with an *	t are bracketed are CCL data					Data tha with an [*]	at are bracketed * are CCL data			
Unique ID	Source/data file location	Species	SCL (cm)	Release Latitude	Release Longitude	Unique ID	Source/data file location	Species	SCL (cm)	Release Latitude
151		hawksbill	6.8	27.8067	-97.0730	191		hawksbill	10.2	26.6152
152		hawksbill	7.0	26.1178	-97.1663	192		hawksbill	10.2	24.7197
153		hawksbill	7.0	29.2359	-81.0113	193		hawksbill	10.3	25.8691
154		hawksbill	7.0	25.1242	-80.407	194		hawksbill	10.3	26.8852
155		hawksbill	7.1	29.0953	-80.9329	195		hawksbill	10.3	26.2217
156		hawksbill	7.2	27.9462	-80.4957	196		hawksbill	10.4	29.0349
157		hawksbill	7.3	26.6391	-80.0372	197		hawksbill	10.5	24.5225
158		hawksbill	7.4	25.8209	-80.1204	198		hawksbill	10.5	29.2067
159		hawksbill	7.5	28.6568	-80.6327	199		hawksbill	10.6	26.6844
160		hawksbill	7.5	29.0269	-80.8884	200		hawksbill	10.8	24.9083
161		hawksbill	7.6	26.0917	-97.1617	201		hawksbill	10.8	28.154
162		hawksbill	7.6	29.1317	-80.9568	202		hawksbill	10.9	26.1898
163		hawksbill	7.6	29.0278	-80.8889	203		hawksbill	10.9	29.0384
164		hawksbill	7.6	26.4103	-80.0641	204		hawksbill	10.9	27.4290
165		hawksbill	7.7	29.2078	-80.9974	205		hawksbill	11.1	26.1663
166		hawksbill	7.8	29.2591	-81.0227	206		hawksbill	11.1	28.7411
167		hawksbill	7.8	24.74	-80.9818	207		hawksbill	11.3	25.7672
168		hawksbill	7.9	26.4397	-80.0605	208		hawksbill	11.4	27.8272
169		hawksbill	8.0	26.544	-80.01	209		hawksbill	11.4	27.5785
170		hawksbill	8.0	26.4851	-97.2484	210		hawksbill	11.5	26.5049
171		hawksbill	8.1	29.0953	-80.9329	211		hawksbill	11.5	26.4899
172		hawksbill	8.1	26.3774	-80.0671	212		hawksbill	11.7	25.9246
173		hawksbill	8.2	29.0694	-80.9094	213		hawksbill	12.1	25.9296
174		hawksbill	8.4	47.7726	-97.1012	214		hawksbill	12.3	27.4155
175		hawksbill	8.6	25.0750	-80.4533	215		hawksbill	12.3	29.2262
176		hawksbill	8.7	26.5045	-97.2546	216		hawksbill	12.4	25.734
177		hawksbill	8.8	29.0436	-80.8977	217		hawksbill	12.5	26.7791
178		hawksbill	8.9	28.0689	-80.5567	218		hawksbill	12.5	36.3281
179		hawksbill	9.1	28.2898	-80.6070	219		hawksbill	12.5	27.161
180		hawksbill	9.1	26.3828	-80.0665	220		hawksbill	12.7	25.9678
181		hawksbill	9.2	26.3779	-80.067	221		hawksbill	12.8	28.9821
182		hawksbill	9.2	27.8109	-97.0685	222		hawksbill	13.0	30.2602
183		hawksbill	9.3	29.0996	-95.0974	223		hawksbill	13.2	27.4723
184		hawksbill	9.4	26.363	-80.0684	224		hawksbill	13.3	26.1617
185		hawksbill	9.4	29.2124	-94.9201	225		hawksbill	13.3	24.7399
186		hawksbill	9.4	27.827	-97.0536	226		hawksbill	13.5	28.3216
187		hawksbill	9.5	28.1058	-96.7984	227		hawksbill	13.8	26.1350
188		hawksbill	9.5	25.6915	-80.1566	228		hawksbill	13.8	28.2312
189		hawksbill	9.6	24.7180	-81.0180	229		hawksbill	13.9	27.7844
190		hawksbill	9.8	29.0732	-80.9113	230		hawksbill	13.9	27.8333

Release Longitude -80.0365 -81.016 -80.1192 -80.0541 -97.1799 -80.8931 -81.6578 -94.9297 -97.3176 -80.5217 -80.5839 -80.0953 -80.8953 -97.2958 -80.0981 -95.67 -80.1202 -97.0528 -97.2206 -80.0514 -80.0533 -80.1208 -80.1204 -97.3018 -94.8968 -80.157 -80.0313 -75.8101 -97.371 -80.1184 -80.8602 -85.9744 -97.2752 -97.1700 -80.9824 -96.438 -97.1667 -96.6182 -97.0915 -97.0483

Data tha with an *	t are bracketed are CCL data					Data tha with an *	t are bracketed are CCL data				
Unique ID	Source/data file location	Species	SCL (cm)	Release Latitude	Release Longitude	Unique ID	Source/data file location	Species	SCL (cm)	Release Latitude	Release Longitude
231		hawksbill	14	24.9475	-80.5981	271		hawksbill	17.8	29.5065	-94.5013
232		hawksbill	14	25.7799	-80.1285	272		hawksbill	17.9	29.2561	-81.0212
233		hawksbill	14.1	27.9050	-97.0050	273		hawksbill	17.9	26.1231	-97.1703
234		hawksbill	14.1	26.1641	-97.1719	274		hawksbill	18	29.0407	-80.8962
235		hawksbill	14.1	30.2483	-87.6768	275		hawksbill	18.3	27.7500	-97.1183
236		hawksbill	14.5	26.038	-80.1137	276		hawksbill	18.4	26.0692	-80.1108
237		hawksbill	14.6	29.3267	-94.7367	277		hawksbill	18.6	27.1956	-97.3659
238		hawksbill	14.7	27.5820	-97.2194	278		hawksbill	18.9	27.1610	-97.3710
239		hawksbill	14.7	26.7241	-80.0346	279		hawksbill	19.2	26.1333	-97.1667
240		hawksbill	14.8	27.5368	-97.2437	280		hawksbill	19.2	27.5799	-97.2196
241		hawksbill	14.9	27.3915	-80.2602	281		hawksbill	19.6	26.1282	-97.1671
242		hawksbill	15	29.0546	-95.1461	282		hawksbill	19.7	24.4541	-81.8751
243		hawksbill	15.3	29.2117	-94.9200	283		hawksbill	19.9	26.2629	-97.1862
244		hawksbill	15.4	35.0367	-76.0767	284		hawksbill	20.4	25.8494	-80.1189
245		hawksbill	15.5	27.3475	-97.3264	285		hawksbill	20.7	27.7444	-97.122
246		hawksbill	15.5	26.3095	-80.0666	286		hawksbill	20.7	27.332	-97.3316
247		hawksbill	15.6	27.7571	-97.1124	287		hawksbill	20.8	26.0688	-80.1110
248		hawksbill	15.7	32.335	-78.7233	288		hawksbill	21	26.3676	-80.0682
249		hawksbill	15.8	28.2247	-96.6285	289		hawksbill	22	26.7497	-97.3372
250		hawksbill	15.9	24.4650	-81.5527	290		hawksbill	22.2	26.0604	-97.1511
251		hawksbill	16.0	28.2481	-96.5890	291		hawksbill	22.6	24.9000	-80.6544
252		hawksbill	16	27.3471	-97.3272	292		hawksbill	22.7	27.75	-97.1167
253		hawksbill	16.1	28.6808	-95.7827	293		hawksbill	23.1	28.278	-96.5306
254		hawksbill	16.2	27.6833	-97.1633	294		hawksbill	23.6	28.0948	-82.8359
255		hawksbill	16.2	27.7522	-97.1164	295		hawksbill	24.3	27.5294	-97.2473
256		hawksbill	16.2	29.2087	-94.9260	296		hawksbill	25.5	26.628	-97.2997
257		hawksbill	16.3	27.4300	-97.3000	297		hawksbill	25.7	26.4393	-80.0605
258		hawksbill	16.5	26.8232	-80.0379	298		hawksbill	25.7	27.9472	-82.8357
259		hawksbill	16.6	28.3539	-80.6043	299		hawksbill	26.4	29.0985	-95.0990
260		hawksbill	16.6	27.5845	-97.2189	300		hawksbill	26.5	26.1656	-97.1700
261		hawksbill	16.7	29.2514	-94.8526	301		hawksbill	26.5	27.4158	-97.3017
262		hawksbill	16.8	34.6702	-76.6070	302		hawksbill	26.6	24.7285	-81.0033
263		hawksbill	16.8	29.6662	-81.2112	303		hawksbill	26.9	26.5645	-97.2747
264		hawksbill	17.3	27.5820	-97.2195	304		hawksbill	27.8	28.9719	-80.8534
265		hawksbill	17.4	24.7178	-81.022	305		hawksbill	29.5	29.1989	-80.9931
266		hawksbill	17.5	29.0701	-95.1255	306		hawksbill	31.0	29.2974	-81.0416
267		hawksbill	17.6	27.7684	-97.1038	307		hawksbill	31.9	24.6950	-81.1800
268		hawksbill	17.7	27.0157	-82.4161	308		hawksbill	33.2	27.5657	-97.2286
269		hawksbill	17.8	24.7226	-81.0515	309		hawksbill	34.1	26.5722	-97.2783
270		hawksbill	17.8	29.1816	-94.9722	310		hawksbill	35.8	31.1473	-81.3652

Data tha with an *	at are bracketed are CCL data				
Jnique D	Source/data file location	Species	SCL (cm)	Release Latitude	Release Longitude
311		hawksbill	38.1	28.9151	-80.8143
312		hawksbill	38.5	24.8536	-80.7313
313		hawksbill	39	27.1687	-82.493
314		hawksbill	40	27.9507	-82.8345
315		hawksbill	44.4	27.3453	-82.607
316		hawksbill	46.8	26.4899	-80.0533
317		hawksbill	48	26.742	-80.0147
318		hawksbill	49.6	25.1762	-80.3435
319		hawksbill	51.5	26.4258	-82.0616
320		hawksbill	54.9	26.7882	-80.0162
321		hawksbill	56.0	26.5947	-97.2883
322		hawksbill	56.2	29.1518	-80.9682
323		hawksbill	57.5	26.646	-80.0371
324		hawksbill	60.6	27.7463	-80.3868
325		hawksbill	61.0	26.0938	-80.0868
326		hawksbill	66.8	24.9950	-80.5000
327		hawksbill	70.1	26.7083	-80.0167
328		hawksbill	75.6	26.873	-80.0133
329		hawksbill	76.8	24.7269	-81.0066
330		hawksbill	77.1	26.4361	-80.0611
331		hawksbill	78.5	25.0245	-80.4941

Endnotes

- 1 NOAA, NMFS, SERO. (2014). Endangered Species Act - Section 7 Consultation Biological Opinion (Biological Opinion). National Oceanic and Atmospheric Administration (NOAA), National Marine Fisheries Service (NMFS), Southeast Regional Office (SERO). Retrieved from http://safmc.net/sites/ default/files/meetings/pdf/Advisory%20 Panels/2015/Shrimp_Apr/A1b_shrimp_ biological_opinion_2014.pdf
- 2 NOAA. (2014, January 30). Bottom Trawls: Fishing Gear and Risks to Protected Species : NOAA Fisheries. Retrieved September 12, 2016, from http://www. nmfs.noaa.gov/pr/interactions/gear/ bottomtrawl.htm
- 3 NOAA, NMFS, SERO. (2014). Endangered Species Act - Section 7 Consultation Biological Opinion (Biological Opinion). National Oceanic and Atmospheric Administration (NOAA), National Marine Fisheries Service (NMFS), Southeast Regional Office (SERO). Retrieved from http://safmc.net/sites/ default/files/meetings/pdf/Advisory%20 Panels/2015/Shrimp_Apr/A1b_shrimp_ biological_opinion_2014.pdf
- 4 NOAA SEFSC. (n.d.). Southeast Fisheries Science Center - NOAA - National Marine Fisheries Service. Retrieved September 30, 2016, from http://www.sefsc.noaa.gov/ labs/mississippi/ted/history.htm
- 5 NOAA. (2014, January 30). Bottom Trawls: Fishing Gear and Risks to Protected Species :: NOAA Fisheries. Retrieved September 12, 2016, from http://www. nmfs.noaa.gov/pr/interactions/gear/ bottomtrawl.htm
- 6 NOAA, NMFS, SERO. (2014). Endangered Species Act - Section 7 Consultation Biological Opinion (Biological Opinion). National Oceanic and Atmospheric Administration (NOAA), National Marine Fisheries Service (NMFS), Southeast Regional Office (SERO). Retrieved from http://safmc.net/sites/ default/files/meetings/pdf/Advisory%20 Panels/2015/Shrimp_Apr/A1b_shrimp_ biological_opinion_2014.pdf
- 7 Pulver, J. R., Scott-Denton, E., & Williams, J. (2012). Characterization of the U.S. Gulf of Mexico Skimmer Trawl Fishery Based on Observer Data (NOAA Technical Memorandum No. NMFS-SEFSC-636). Galveston, TX: Southeast Fisheries Science Center.
- 8 "Skimmer Trawls" used as substitute for skimmer, pusher head, and wing net trawls throughout report for ease.

- 9 NOAA, NMFS, SERO. (2014). Endangered Species Act - Section 7 Consultation Biological Opinion (Biological Opinion). National Oceanic and Atmospheric Administration (NOAA), National Marine Fisheries Service (NMFS), Southeast Regional Office (SERO). Retrieved from http://safmc.net/sites/default/files/ meetings/pdf/Advisory%20Panels/2015/ Shrimp_Apr/A1b_shrimp_biological_ opinion_2014.pdf
- 10 Id.
- 11 Sea Turtle Conservation; Shrimp Trawling Requirements, 77 Fed. Reg. 27411, 27412 (proposed May 10, 2012) (to be codified at 50 C.F.R. pt. 223).
- 12 Wildlife and Fisheries, 50 CFR § 223.206(d) (2)(ii)(A) (2015); Sea Turtle Conservation; Shrimp Trawling Requirements, 77 Fed. Reg. at 27412 (stating that skimmer trawls, pusher-head trawls, and wing nets (butterfly trawls), however, may employ alternative tow time restrictions in lieu of TEDs, which limit tow times to 55 minutes from April 1 through October 31, and 75 minutes from November 1 through March 31).
- 13 Sea Turtle Conservation; Shrimp Trawling Requirements, 77 Fed. Reg. at 27412.
- 14 Id. at 27413.
- 15 NOAA. (2012). New data prompts NOAA Fisheries to withdraw proposed rule to require turtle excluder devices in certain shrimp trawls. Retrieved from http:// sero.nmfs.noaa.gov/news_room/press_ releases/2012/press_release_skimmer_ trawl_proposed_rule.pdf
- 16 The distance from the front of the shell to the back of the shell not including the arch.
- 17 Memorandum from Bonnie Ponwith on SEFSC Skimmer Trawl Observer Data and Analysis (Sea Turtle Captures and Percentage Released in TEDs) to Roy E. Crabtree (Aug. 16, 2012) (on file with Oceana).
- 18 Dominy Hataway & Jeff Gearhart, Draft
 2016 TED Evaluations for Skimmer Trawls
 2 (2016) (on file with Oceana).
- 19 National Marine Fisheries Service, & U.S. Fish and Wildlife Service. (2015). Kemp's Ridley Sea Turtle 5-Year Review: Summary and Evaluation.; Witherington, B., Hirama, S., & Hardy, R. (2012). Young sea turtles of the pelagic Sargassum-dominated drift community: habitat use, population density, and

threats. Marine Ecology Progress Series, 463, 1–22. https://doi.org/10.3354/meps09970

- 20 NOAA, NMFS, SERO. (2014). Endangered Species Act - Section 7 Consultation Biological Opinion (Biological Opinion). National Oceanic and Atmospheric Administration (NOAA), National Marine Fisheries Service (NMFS), Southeast Regional Office (SERO). Retrieved from http://safmc.net/sites/default/files/ meetings/pdf/Advisory%20Panels/2015/ Shrimp_Apr/A1b_shrimp_biological_ opinion_2014.pdf
- 21 Greens that were captured were between 14.1 and 28.8 centimeters SCL and Kemp's ridleys were between 14.6 and 29.9 centimeters SCL
- 22 Putman, N. F., & Mansfield, K. L. (2015). Direct Evidence of Swimming Demonstrates Active Dispersal in the Sea Turtle "Lost Years." *Current Biology*, 25(9), 1221–1227. https://doi.org/10.1016/j.cub.2015.03.014
- 23 With the exception of Florida which requires TEDs in all trawls within state waters. http://www.biologicaldiversity. org/news/press_releases/2012/seaturtles-06-01-2012.html
- Marine Turtle Specialist Group. 1996. Lepidochelys kempii. The IUCN Red List of Threatened Species 1996: e.T11533A3292342. http://dx.doi. org/10.2305/IUCN.UK.1996.RLTS. T11533A3292342.en. Downloaded on 07 October 2016.
- 25 National Marine Fisheries Service, & U.S. Fish and Wildlife Service. (2015). *Kemp's Ridley Sea Turtle 5-Year Review: Summary and Evaluation.*
- 26 National Marine Fisheries Service, & U.S. Fish and Wildlife Service. (2015). *Kemp's Ridley Sea Turtle 5-Year Review: Summary and Evaluation.*
- 27 Frequently associating with Sargassum macroalgae. Witherington, B., Hirama, S., & Hardy, R. (2012). Young sea turtles of the pelagic Sargassum-dominated drift community: habitat use, population density, and threats. *Marine Ecology Progress Series*, 463, 1–22. https://doi. org/10.3354/meps09970
- 28 National Marine Fisheries Service, & U.S. Fish and Wildlife Service. (2015). *Kemp's Ridley Sea Turtle 5-Year Review: Summary and Evaluation.*

Endnotes

- 29 Putman, N. F., & Mansfield, K. L. (2015). Direct Evidence of Swimming Demonstrates Active Dispersal in the Sea Turtle "Lost Years." Current Biology, 25(9), 1221–1227. https:// doi.org/10.1016/j.cub.2015.03.014; Memorandum from Bonnie Ponwith on SEFSC Skimmer Trawl Observer Data and Analysis (Sea Turtle Captures and Percentage Released in TEDs) to Roy E. Crabtree (Aug. 16, 2012) (on file with Oceana); E-mail from Wendy Teas, NOAA Federal, to Jennifer Lee, NOAA Federal (May 31, 2013, 12:05 EDT) (on file with Oceana).
- 30 Straight carapace length (SCL) is the distance from the front to the back of the shell, not including the arch.
- 31 The oceanic juvenile stage can be defined as the pelagic phase or the time small juveniles spend in the oceanic current system predominately in the Gulf of Mexico, with a small portion traveling the Loop Current and into the Gulf Stream to the south and mid-Atlantic region. The secondary juvenile phase is defined as the transition from the pelagic environment to the neritic, or nearshore shallow coastal habitat (National Marine Fisheries Service & U.S. Fish and Wildlife Service, 2015).
- 32 Only 331 of the 352 data points were mapped. The 21 that were excluded were done so to comply with confidentiality of vessel locations.
- 33 Data included from administrative record and academic sources documenting "offshore" captures. Sea turtles located in inshore habitats including bays, estuaries and sounds were not included.
- 34 This data file (credit: Jo Williams, James Primrose, Rick Hart- NOAA Fisheries) consists of vessel locations collected from the Electronic Log Book (ELB) program from 2011-2015 that are classified as "trawling" based on vessel speed. Trawling duration (TOWSECS) were summed in a 5 kilometer grid, with any cells containing data collected from less than three vessels removed, as dictated by the Magnuson-Stevens Act in order to maintain confidentiality. While these data do not represent Gulf of Mexico shrimp fishery effort, it can be used to detect the presence or absence of shrimping activity from 2011-

2015. The file contains data collected from 896 unique vessels, however, not all vessels were equipped with an ELB for the entire duration of this data set.

- 35 (ELB Data Credit: Jo Williams, James Primrose, Rick Hart-NOAA Fisheries; Coastline Data Credit: NOAA's Office of Ocean Resources Conservation and Assessment; Putman, N. F., & Mansfield, K. L. (2015). Direct Evidence of Swimming Demonstrates Active Dispersal in the Sea Turtle "Lost Years." Current Biology, 25(9), 1221-1227. https://doi.org/10.1016/j. cub.2015.03.014; Memorandum from Bonnie Ponwith on SEFSC Skimmer Trawl **Observer Data and Analysis (Sea Turtle** Captures and Percentage Released in TEDs) to Roy E. Crabtree (Aug. 16, 2012) (on file with Oceana); E-mail from Wendy Teas, NOAA Federal, to Jennifer Lee, NOAA Federal (May 31, 2013, 12:05 EDT) (on file with Oceana).
- Pulver, J. R., Scott-Denton, E., & Williams, J. (2012). Characterization of the U.S. Gulf of Mexico Skimmer Trawl Fishery Based on Observer Data (NOAA Technical Memorandum No. NMFS-SEFSC-636). Galveston, TX: Southeast Fisheries Science Center.; Putman, N. F., & Mansfield, K. L. (2015). Direct Evidence of Swimming Demonstrates Active Dispersal in the Sea Turtle "Lost Years." Current Biology, 25(9), 1221–1227. https://doi.org/10.1016/j. cub.2015.03.014
- 37 NOAA SEFSC. (n.d.). Southeast Fisheries Science Center - NOAA - National Marine Fisheries Service. Retrieved September 30, 2016, from http://www.sefsc.noaa.gov/ labs/mississippi/ted/history.htm
- 38 Body depth is the width from the bottom of the lower shell to the tallest part of the upper shell.
- Putman, N. F., & Mansfield, K. L.
 (2015). Direct Evidence of Swimming Demonstrates Active Dispersal in the Sea Turtle "Lost Years." *Current Biology*, 25(9), 1221–1227. https://doi.org/10.1016/j.
 cub.2015.03.014; Memorandum from Bonnie Ponwith on SEFSC Skimmer Trawl Observer Data and Analysis (Sea Turtle Captures and Percentage Released in TEDs) to Roy E. Crabtree (Aug. 16, 2012) (on file with Oceana); E-mail from Wendy Teas, NOAA Federal, to Jennifer Lee,

NOAA Federal (May 31, 2013, 12:05 EDT) (on file with Oceana).

- 40 The file contains data collected from 896 unique vessels, however, not all vessels were equipped with an ELB for the entire duration of this data set.
- 41 (ELB Data Credit: Jo Williams, James Primrose, Rick Hart-NOAA Fisheries; Coastline Data Credit: NOAA's Office of Ocean Resources Conservation and Assessment; Putman, N. F., & Mansfield, K. L. (2015). Direct Evidence of Swimming Demonstrates Active Dispersal in the Sea Turtle "Lost Years." Current Biology, 25(9), 1221-1227. https://doi.org/10.1016/j. cub.2015.03.014; Memorandum from Bonnie Ponwith on SEFSC Skimmer Trawl Observer Data and Analysis (Sea Turtle Captures and Percentage Released in TEDs) to Roy E. Crabtree (Aug. 16, 2012) (on file with Oceana); E-mail from Wendy Teas, NOAA Federal, to Jennifer Lee, NOAA Federal (May 31, 2013, 12:05 EDT) (on file with Oceana).
- 42 Bevan, E., Wibbels, T., Najera, B., Sarti, L., Martinez, F., Cuevas, J., Gallaway, B., Burchfield, P. (2016). Estimating the historic size and current status of the Kemp's ridley sea turtle (Lepidochelys kempii) population. *Ecosphere*, 7(3).
- 43 Notice of Intent To Prepare an Environmental Impact Statement for Sea Turtle Conservation and Recovery Actions in Relation to the Southeastern United States Shrimp Fishery and To Conduct Public Scoping Meetings, 81 Fed. Reg. 13772, 13774 (proposed Mar. 15, 2016).
- Teas, W. G. (1993). Species composition and size class distribution of marine turtle strandings on the Gulf of Mexico and southeast United States coasts, 1985-1991. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center.
- 45 Memorandum from Bonnie Ponwith on SEFSC Skimmer Trawl Observer Data and Analysis (Sea Turtle Captures and Percentage Released in TEDs) to Roy E. Crabtree (Aug. 16, 2012) (on file with Oceana).